Molecular mechanisms of androgen-independent growth of human prostate cancer LNCaP-AI cells.

نویسندگان

  • S Lu
  • S Y Tsai
  • M J Tsai
چکیده

The goal of this study is to investigate the molecular mechanisms of androgen-independent growth in prostate cancer. We have established an androgen-independent prostatic carcinoma LNCaP-AI (defined as a LNCaP cell line that is capable of growing in charcoal-stripped serum) from the androgen-dependent LNCaP-FGC cells. In contrast to the androgen-independent PC-3 human prostate cancer cells, LNCaP-AI cells still express a similar level of androgen receptor as their parental cells and are sensitive to androgen stimulation. Compared with the parental LNCaP-FGC cells, LNCaP-AI cells are more resistant to apoptosis induced by 12-O-tetradecanoylphorbol-13-acetate and express a much higher level of antiapoptotic gene bcl-2 and cyclin-dependent kinase inhibitor p21, which may confer an enhanced antiapoptosis phenotype. On the other hand, expression of cyclin-dependent kinase inhibitor p16 is significantly reduced in the LNCaP-AI cells, implying the release of an inhibitory effect of p16 on cell cycle progression. Taken together, our results suggest that multiple factors contribute to the development of androgen-independent growth of prostatic carcinoma cells, including enhancement of cell antiapoptosis function, release of cell cycle inhibition, and stimulation of cell proliferation by alternative signaling pathways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of NGEP expression in androgen sensitive prostate cancer cells: A potential target for immunotherapy

  Background: Prostate cancer is one of the leading causes of cancer deaths among men. New gene expressed in prostate (NGEP), is a prostate-specific gene expressed only in normal prostate and prostate cancer tissue. Because of its selective expression in prostate cancer cell surface, NGEP is a potential immunotherapeutic target. To target the NGEP in prostate cancer, it is essential to investig...

متن کامل

LEF1 in androgen-independent prostate cancer: regulation of androgen receptor expression, prostate cancer growth, and invasion.

A major obstacle in treating prostate cancer is the development of androgen-independent disease. In this study, we examined LEF1 expression in androgen-independent cancer as well as its regulation of androgen receptor (AR) expression, prostate cancer growth, and invasion in androgen-independent prostate cancer cells. Affymetrix microarray analysis of LNCaP and LNCaP-AI (androgen-independent var...

متن کامل

Progression Model Progression in a Lineage-Derived Prostate Cancer and Signaling Are Components of Androgen-Independent Increased Insulin-Like Growth Factor I Receptor Expression

Apoptosis and inhibition of mitosis are primary mechanisms mediating androgen ablation therapy-induced regression of prostate cancer (PCa). However, PCa readily becomes androgen independent, leading to fatal disease. Up-regulated growth and survival signaling is implicated in development of resistance to androgen ablation therapy. We are testing the hypothesis that insulin-like growth factor (I...

متن کامل

Androgen-independent LNCaP cells are a subline of LNCaP cells with a more aggressive phenotype and androgen suppresses their growth by inducing cell cycle arrest at the G1 phase

Androgen deprivation therapy (ADT, surgical or chemical castration) is the mainstay treatment for metastatic prostate cancer (PCa); however, patients ineluctably relapse despite extremely low androgen levels. This evolution of PCa indicates its lethal progression. In this study, to mimic the traits of clinical PCa progression in vitro, we investigated the alterations in the cell biological char...

متن کامل

Increased insulin-like growth factor I receptor expression and signaling are components of androgen-independent progression in a lineage-derived prostate cancer progression model.

Apoptosis and inhibition of mitosis are primary mechanisms mediating androgen ablation therapy-induced regression of prostate cancer (PCa). However, PCa readily becomes androgen independent, leading to fatal disease. Up-regulated growth and survival signaling is implicated in development of resistance to androgen ablation therapy. We are testing the hypothesis that insulin-like growth factor (I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Endocrinology

دوره 140 11  شماره 

صفحات  -

تاریخ انتشار 1999